Back
About RSIS
Introduction
Building the Foundations
Welcome Message
Board of Governors
Staff Profiles
Executive Deputy Chairman’s Office
Dean’s Office
Management
Distinguished Fellows
Faculty and Research
Associate Research Fellows, Senior Analysts and Research Analysts
Visiting Fellows
Adjunct Fellows
Administrative Staff
Honours and Awards for RSIS Staff and Students
RSIS Endowment Fund
Endowed Professorships
Career Opportunities
Getting to RSIS
Research
Research Centres
Centre for Multilateralism Studies (CMS)
Centre for Non-Traditional Security Studies (NTS Centre)
Centre of Excellence for National Security (CENS)
Institute of Defence and Strategic Studies (IDSS)
International Centre for Political Violence and Terrorism Research (ICPVTR)
Research Programmes
National Security Studies Programme (NSSP)
Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
Future Issues and Technology Cluster
Research@RSIS Newsletter
Other Research
Science and Technology Studies Programme (STSP) (2017-2020)
Graduate Education
Graduate Programmes Office
Exchange Partners and Programmes
How to Apply
Financial Assistance
Meet the Admissions Team: Information Sessions and other events
RSIS Alumni
Alumni & Networks
Alumni
Asia-Pacific Programme for Senior Military Officers (APPSMO)
Asia-Pacific Programme for Senior National Security Officers (APPSNO)
International Strategy Forum-Asia (ISF-Asia)
SRP Executive Programme
Terrorism Analyst Training Course (TATC)
Publications
RSIS Publications
Annual Reviews
Books
Bulletins and Newsletters
Commentaries
Counter Terrorist Trends and Analyses
Commemorative / Event Reports
IDSS Paper
Interreligious Relations
Monographs
NTS Insight
Policy Reports
Working Papers
RSIS Publications for the Year
Glossary of Abbreviations
External Publications
Authored Books
Journal Articles
Edited Books
Chapters in Edited Books
Policy Reports
Working Papers
Op-Eds
External Publications for the Year
Policy-relevant Articles Given RSIS Award
Media
2024 Indonesia Elections
Great Powers
Sustainable Security
Other Resource Pages
Media Mentions
News Releases
Speeches
Video/Audio Channel
External Podcasts
Events
S. Rajaratnam School of International Studies Think Tank and Graduate School Ponder The Improbable Since 1966
Nanyang Technological University Nanyang Technological University
  • About RSIS
      IntroductionBuilding the FoundationsWelcome MessageBoard of GovernorsHonours and Awards for RSIS Staff and StudentsRSIS Endowment FundEndowed ProfessorshipsCareer OpportunitiesGetting to RSIS
      Staff ProfilesExecutive Deputy Chairman’s OfficeDean’s OfficeManagementDistinguished FellowsFaculty and ResearchAssociate Research Fellows, Senior Analysts and Research AnalystsVisiting FellowsAdjunct FellowsAdministrative Staff
  • Research
      Research CentresCentre for Multilateralism Studies (CMS)Centre for Non-Traditional Security Studies (NTS Centre)Centre of Excellence for National Security (CENS)Institute of Defence and Strategic Studies (IDSS)International Centre for Political Violence and Terrorism Research (ICPVTR)
      Research ProgrammesNational Security Studies Programme (NSSP)Studies in Inter-Religious Relations in Plural Societies (SRP) Programme
      Future Issues and Technology ClusterResearch@RSIS Newsletter
      Other ResearchScience and Technology Studies Programme (STSP) (2017-2020)
  • Graduate Education
      Graduate Programmes OfficeExchange Partners and ProgrammesHow to Apply
      Financial AssistanceMeet the Admissions Team: Information Sessions and other eventsRSIS Alumni
  • Alumni & Networks
      AlumniAsia-Pacific Programme for Senior Military Officers (APPSMO)Asia-Pacific Programme for Senior National Security Officers (APPSNO)
      International Strategy Forum-Asia (ISF-Asia)SRP Executive ProgrammeTerrorism Analyst Training Course (TATC)
  • Publications
      RSIS PublicationsAnnual ReviewsBooksBulletins and NewslettersCommentariesCounter Terrorist Trends and AnalysesCommemorative / Event ReportsIDSS PaperInterreligious RelationsMonographsNTS InsightPolicy ReportsWorking PapersRSIS Publications for the Year
      External PublicationsAuthored BooksJournal ArticlesEdited BooksChapters in Edited BooksPolicy ReportsWorking PapersOp-EdsExternal Publications for the Year
      Glossary of AbbreviationsPolicy-relevant Articles Given RSIS Award
  • Media
      2024 Indonesia ElectionsGreat PowersSustainable SecurityOther Resource PagesMedia Mentions
      News ReleasesSpeechesVideo/Audio ChannelExternal Podcasts
  • Events
    • Connect with Us

      rsis.ntu
      rsis_ntu
      rsisntu
      rsisvideocast
      school/rsis-ntu
      rsis.sg
      RSIS
      RSS
      Subscribe to RSIS Publications
      Subscribe to RSIS Events

      Getting to RSIS

      Nanyang Technological University
      Block S4, Level B3,
      50 Nanyang Avenue,
      Singapore 639798

      Click here for direction to RSIS

      Get in Touch

    Connect
    Search
    • RSIS
    • Publication
    • RSIS Publications
    • Beyond COVID-19: Global Priorities Against Future Contagion
    • Annual Reviews
    • Books
    • Bulletins and Newsletters
    • Commentaries
    • Counter Terrorist Trends and Analyses
    • Commemorative / Event Reports
    • IDSS Paper
    • Interreligious Relations
    • Monographs
    • NTS Insight
    • Policy Reports
    • Working Papers
    • RSIS Publications for the Year

    CO20030 | Beyond COVID-19: Global Priorities Against Future Contagion
    Jose Ma. Luis P. Montesclaros

    20 February 2020

    download pdf
    RSIS Commentary is a platform to provide timely and, where appropriate, policy-relevant commentary and analysis of topical and contemporary issues. The authors’ views are their own and do not represent the official position of the S. Rajaratnam School of International Studies (RSIS), NTU. These commentaries may be reproduced with prior permission from RSIS and due credit to the author(s) and RSIS. Please email to Editor RSIS Commentary at [email protected].

    SYNOPSIS

    Given the credible threat of disease re-emergence and evolution, governments today should allocate resources to preventing future novel diseases, even as they face ‘wartime conditions’ in battling COVID-19.

    COMMENTARY

    IN A twist of fate, even as China battles with COVID-19, it has also seen the re-emergence of another disease, the bird flu epidemic also known as H5N1, with more than 17,000 chickens culled as of the beginning of February.
    Yet, this sequence of events may only be the ‘tip of the iceberg’, if one considers the findings of the Economist Intelligence Unit’s (EIU) assessment of global health capacities, released five months ago. For instance, India, the world’s second most populous country, had battled with the very same diseases although at a smaller scale, in recent weeks.

    Ill-prepared World

    In October 2019, the EIU Global Health Security Index had indicated that “(no) single country in the world is fully prepared to handle an epidemic or pandemic”. Granted, a 100% preparedness level may be hard to achieve. What is surprising, however, is how far countries are from the ideal state: the global average score is 40 out of 100, and even among the richest, high-income countries, the average score is 51.9.

    Worse still, this comes 15 years since the World Health Organisation (WHO) released its International Health Regulations in 2005, one of the references for the EIU’s index. It recommended “strengthen(ing) national disease surveillance, prevention, control and response systems… (and) public health security in travel and transport”.

    No one can say that the global community had not been forewarned. As early as March 2019, scholars from the Wuhan Institute of Virology and the Chinese Academy of Sciences had already published, presciently. They warned: “It is highly likely that future SARS- or MERS-like coronavirus outbreaks will originate from bats, and there is an increased probability that this will occur in China.”

    Overwhelming and Intractable

    What those Wuhan scholars did not anticipate then though, was that while COVID-19 would not be nearly as deadly as Severe Acute Respiratory Syndrome (SARS), it would instead be many times more contagious, closer in fact to the swine influenza, H1N1.

    The trait of being highly contagious but less (yet still) lethal, has been interpreted previously as the virus’ own evolutionary mechanism to adapt and raise its own probability of survival.

    Indeed, if COVID-19 had killed off its first victims immediately, then after migrating from animals to man,  it would have been less likely to ‘travel’ abroad too, and situate itself in over 29 countries and a cruise ship, “Diamond Princess”. We do not yet know how its lethal properties may worsen in the long run, as there are still multiple pending cases.

    This trend of evolution of viruses is making disease diagnosis more time-consuming, almost impossible for any single country, with the global community paying the higher costs of delays in findings. For instance, it took three weeks to confirm COVID-19’s human-to-human transmission (21st January), since the time when the Chinese government reported its ‘mystery pneumonia-like disease’ (31 December 2019).

    The exponential spread of the virus within China (with spill-overs abroad), could have been significantly slowed had earlier action been taken.

    Yet, one cannot blame China, as its investment in infectious disease testing and monitoring far outstrips other countries, at US$1.94 billion, approximately triple that of the next biggest investor, Japan ($640 million), as reflected in the EIU’s recent web briefing on COVID-19.

    Other countries today are thus more likely than not to have been caught off guard had they faced the same plight. In spite of these, China still saw a preponderance of ‘false-negatives’ such that its testing accuracy was only at 30-50%. Moreover, it took three days to generate tests results in Beijing, and only seven hospitals were equipped with some genome sequencing capacity for virus diagnosis, the EIU shared.

    Keeping Watch: Some Lessons

    WHO data shows that COVID-19’s spread is slowing, having reached the highest number of daily new, lab-confirmed cases (approx. 4,000) on 5 February 2020; by 16 February this number had decreased to close to 1,000.

    Nonetheless, three key lessons can be gleaned from this experience thus far, if countries are to avoid the same plight. First, early research efforts are needed in preparing for future disease outbreaks, long before wartime conditions occur; in fact, doing so can shift global action from ‘fire-fighting’ to prevention.

    Global collaboration, seen today, should have begun with this, rather than in responding to the virus after it became an international phenomenon.

    Second, inputs from the academic and scientific community need to be given more weight. It is one thing to have faced COVID-19, but it is quite something else to have faced it even after warnings had been given in the previous first quarter in 2019.

    Third, as the types of novel forms of diseases have virtually multiplied over time, with each branch of the organism giving birth to sub-branches of different levels of contagiousness and lethality, potentially hitting multiple countries at the same time, it is imperative that an equally vigilant and networked approach is taken by the international community.

    Going Forward: Three Lenses

    A networked approach to preparing for novel diseases in future would be akin to holding three types of lenses at the same time: wide-lenses to see the full range of diseases as they occur; a microscope to investigate each one of them; and binoculars to foresee how these viruses are transforming far into the future.

    This is embodied in the Global (genome) Microbial Identifier (GMI) initiative advocated by scientists in 2011. The GMI is a “global system to aggregate, share, mine and translate genomic data for microorganisms in real-time”. This could provide ‘wide-lenses’ through real-time information sharing among scientists, governments and the private sector.

    For instance, the EIU shared involvement by Singapore’s own Agency for Science, Technology and Research (A*STAR) in developing new diagnostic tests for COVID-19; China Mobile in tracking and minimising spread; Alibaba in mitigation; and Glaxosmithkline in designing treatments and vaccines, among others. It also gives ‘binoculars’, through synergistic research on the rapid evolution of pathogenic micro-organisms.

    However, it requires capacitating states with super ‘microscopes’, using whole-genome sequencing (WGS) or next generation genome sequencing (NGS) tools, as a previous RSIS report recommended.

    These are magnitudes more comprehensive than existing tests known as reverse transcription polymerase chain reaction (RT-PCR) tests mentioned in the EIU’s website. They require training and sufficient lead time to institutionalise. If anything, this is the type of early action needed today in facing potential contagions of tomorrow.

    About the Author

    Jose Montesclaros is Associate Research Fellow at the Centre for Non-Traditional Security Studies (NTS Centre), S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), Singapore. The author would like to acknowledge Professor Jørgen Schlundt of the NTU Food Technology Centre (NAFTEC) and Chair of the 2019 Global Microbial Identifier Meeting in NTU for his review of the commentary.

    Categories: Commentaries / Country and Region Studies / Non-Traditional Security / East Asia and Asia Pacific / Global / South Asia / Southeast Asia and ASEAN

    Last updated on 09/07/2020

    comments powered by Disqus
    RSIS Commentary is a platform to provide timely and, where appropriate, policy-relevant commentary and analysis of topical and contemporary issues. The authors’ views are their own and do not represent the official position of the S. Rajaratnam School of International Studies (RSIS), NTU. These commentaries may be reproduced with prior permission from RSIS and due credit to the author(s) and RSIS. Please email to Editor RSIS Commentary at [email protected].

    SYNOPSIS

    Given the credible threat of disease re-emergence and evolution, governments today should allocate resources to preventing future novel diseases, even as they face ‘wartime conditions’ in battling COVID-19.

    COMMENTARY

    IN A twist of fate, even as China battles with COVID-19, it has also seen the re-emergence of another disease, the bird flu epidemic also known as H5N1, with more than 17,000 chickens culled as of the beginning of February.
    Yet, this sequence of events may only be the ‘tip of the iceberg’, if one considers the findings of the Economist Intelligence Unit’s (EIU) assessment of global health capacities, released five months ago. For instance, India, the world’s second most populous country, had battled with the very same diseases although at a smaller scale, in recent weeks.

    Ill-prepared World

    In October 2019, the EIU Global Health Security Index had indicated that “(no) single country in the world is fully prepared to handle an epidemic or pandemic”. Granted, a 100% preparedness level may be hard to achieve. What is surprising, however, is how far countries are from the ideal state: the global average score is 40 out of 100, and even among the richest, high-income countries, the average score is 51.9.

    Worse still, this comes 15 years since the World Health Organisation (WHO) released its International Health Regulations in 2005, one of the references for the EIU’s index. It recommended “strengthen(ing) national disease surveillance, prevention, control and response systems… (and) public health security in travel and transport”.

    No one can say that the global community had not been forewarned. As early as March 2019, scholars from the Wuhan Institute of Virology and the Chinese Academy of Sciences had already published, presciently. They warned: “It is highly likely that future SARS- or MERS-like coronavirus outbreaks will originate from bats, and there is an increased probability that this will occur in China.”

    Overwhelming and Intractable

    What those Wuhan scholars did not anticipate then though, was that while COVID-19 would not be nearly as deadly as Severe Acute Respiratory Syndrome (SARS), it would instead be many times more contagious, closer in fact to the swine influenza, H1N1.

    The trait of being highly contagious but less (yet still) lethal, has been interpreted previously as the virus’ own evolutionary mechanism to adapt and raise its own probability of survival.

    Indeed, if COVID-19 had killed off its first victims immediately, then after migrating from animals to man,  it would have been less likely to ‘travel’ abroad too, and situate itself in over 29 countries and a cruise ship, “Diamond Princess”. We do not yet know how its lethal properties may worsen in the long run, as there are still multiple pending cases.

    This trend of evolution of viruses is making disease diagnosis more time-consuming, almost impossible for any single country, with the global community paying the higher costs of delays in findings. For instance, it took three weeks to confirm COVID-19’s human-to-human transmission (21st January), since the time when the Chinese government reported its ‘mystery pneumonia-like disease’ (31 December 2019).

    The exponential spread of the virus within China (with spill-overs abroad), could have been significantly slowed had earlier action been taken.

    Yet, one cannot blame China, as its investment in infectious disease testing and monitoring far outstrips other countries, at US$1.94 billion, approximately triple that of the next biggest investor, Japan ($640 million), as reflected in the EIU’s recent web briefing on COVID-19.

    Other countries today are thus more likely than not to have been caught off guard had they faced the same plight. In spite of these, China still saw a preponderance of ‘false-negatives’ such that its testing accuracy was only at 30-50%. Moreover, it took three days to generate tests results in Beijing, and only seven hospitals were equipped with some genome sequencing capacity for virus diagnosis, the EIU shared.

    Keeping Watch: Some Lessons

    WHO data shows that COVID-19’s spread is slowing, having reached the highest number of daily new, lab-confirmed cases (approx. 4,000) on 5 February 2020; by 16 February this number had decreased to close to 1,000.

    Nonetheless, three key lessons can be gleaned from this experience thus far, if countries are to avoid the same plight. First, early research efforts are needed in preparing for future disease outbreaks, long before wartime conditions occur; in fact, doing so can shift global action from ‘fire-fighting’ to prevention.

    Global collaboration, seen today, should have begun with this, rather than in responding to the virus after it became an international phenomenon.

    Second, inputs from the academic and scientific community need to be given more weight. It is one thing to have faced COVID-19, but it is quite something else to have faced it even after warnings had been given in the previous first quarter in 2019.

    Third, as the types of novel forms of diseases have virtually multiplied over time, with each branch of the organism giving birth to sub-branches of different levels of contagiousness and lethality, potentially hitting multiple countries at the same time, it is imperative that an equally vigilant and networked approach is taken by the international community.

    Going Forward: Three Lenses

    A networked approach to preparing for novel diseases in future would be akin to holding three types of lenses at the same time: wide-lenses to see the full range of diseases as they occur; a microscope to investigate each one of them; and binoculars to foresee how these viruses are transforming far into the future.

    This is embodied in the Global (genome) Microbial Identifier (GMI) initiative advocated by scientists in 2011. The GMI is a “global system to aggregate, share, mine and translate genomic data for microorganisms in real-time”. This could provide ‘wide-lenses’ through real-time information sharing among scientists, governments and the private sector.

    For instance, the EIU shared involvement by Singapore’s own Agency for Science, Technology and Research (A*STAR) in developing new diagnostic tests for COVID-19; China Mobile in tracking and minimising spread; Alibaba in mitigation; and Glaxosmithkline in designing treatments and vaccines, among others. It also gives ‘binoculars’, through synergistic research on the rapid evolution of pathogenic micro-organisms.

    However, it requires capacitating states with super ‘microscopes’, using whole-genome sequencing (WGS) or next generation genome sequencing (NGS) tools, as a previous RSIS report recommended.

    These are magnitudes more comprehensive than existing tests known as reverse transcription polymerase chain reaction (RT-PCR) tests mentioned in the EIU’s website. They require training and sufficient lead time to institutionalise. If anything, this is the type of early action needed today in facing potential contagions of tomorrow.

    About the Author

    Jose Montesclaros is Associate Research Fellow at the Centre for Non-Traditional Security Studies (NTS Centre), S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), Singapore. The author would like to acknowledge Professor Jørgen Schlundt of the NTU Food Technology Centre (NAFTEC) and Chair of the 2019 Global Microbial Identifier Meeting in NTU for his review of the commentary.

    Categories: Commentaries / Country and Region Studies / Non-Traditional Security

    Last updated on 09/07/2020

    Popular Links

    About RSISResearch ProgrammesGraduate EducationPublicationsEventsAdmissionsCareersVideo/Audio ChannelRSIS Intranet

    Connect with Us

    rsis.ntu
    rsis_ntu
    rsisntu
    rsisvideocast
    school/rsis-ntu
    rsis.sg
    RSIS
    RSS
    Subscribe to RSIS Publications
    Subscribe to RSIS Events

    Getting to RSIS

    Nanyang Technological University
    Block S4, Level B3,
    50 Nanyang Avenue,
    Singapore 639798

    Click here for direction to RSIS

    Get in Touch

      Copyright © S. Rajaratnam School of International Studies. All rights reserved.
      Privacy Statement / Terms of Use
      Help us improve

        Rate your experience with this website
        123456
        Not satisfiedVery satisfied
        What did you like?
        0/255 characters
        What can be improved?
        0/255 characters
        Your email
        Please enter a valid email.
        Thank you for your feedback.
        This site uses cookies to offer you a better browsing experience. By continuing, you are agreeing to the use of cookies on your device as described in our privacy policy. Learn more
        OK
        Latest Book
        more info